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Humans use saccadic eye movements when they search for visual targets. We investigated the relationship
between the visual processing used by saccades and perception during search by comparing saccadic and per-
ceptual decisions under conditions in which each had access to equal visual information. We measured the
accuracy of perceptual judgments and of the first search saccade over a wide range of target saliences [signal-
to-noise ratios (SNRs)] in both a contrast-detection and a contrast-discrimination task. We found that sac-
cadic and perceptual performances (1) were similar across SNRs, (2) showed similar task-dependent differ-
ences, and (3) were well described by a model based on signal detection theory that explicitly includes observer
uncertainty [M. P. Eckstein et al., J. Opt. Soc. Am. A 14, 2406 (1997)]. Our results demonstrate that the ac-
curacy of the first saccade provides much information about the observer’s perceptual state at the time of the
saccadic decision and provide evidence that saccades and perception use similar visual processing mechanisms
for contrast detection and discrimination.
OCIS codes: 330.1880, 330.2210, 330.4060, 330.4300.
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1. INTRODUCTION

In everyday life, if you are not sure what a person is
thinking or doing, you can get a better understanding by
watching the person’s eyes to determine what they are
looking at. The goal of this study is to determine
whether similar visual processes mediate saccades and
perception and how much can be learned about visual
perception by examining saccadic eye movements. Sac-
cades are fast, ballistic eye movements used to rapidly
change gaze position from one region in the visual field to
another. To explore and gather information about their
environment, humans make frequent saccades to point
their high-resolution foveae at the object or the spatial lo-
cation of current interest. Clearly, saccades and percep-
tion are related; humans can deliberately make a saccade
to foveate a chosen object to gain more information about
it, yet most of our frequent saccades occur without such
conscious deliberation. Each saccade is the result of a
neural decision, which specifies where the saccade should
land and when to initiate it. We are interested in how
the brain makes such decisions and the relationship be-
tween this motor decision and perception when the loca-
tion of the target is not completely obvious or predeter-
mined. Do saccades and perception share visual
processing about the possible target location, or are they
controlled by separate neural pathways that make inde-
pendent decisions based on different information?

Saccadic eye movements are especially important in
performing visual search tasks in which the observer
must scan a display to locate a target. While a number of
studies have examined saccadic and perceptual perfor-
mance in search and searchlike tasks, few have directly
addressed the question of whether or not saccades and
perception use the same neural estimate of target loca-
tion. If the saccadic and perceptual decisions are medi-
ated by the same neural processing, then saccadic and
perceptual performance should be similar across a wide
range of experimental conditions (e.g., target—distractor
similarity, type of task, etc.). However, to pose this ques-
tion in a meaningful way, it is necessary to ensure that
both saccades and perception have access to the same vi-
sual input. In particular, processing times and target
eccentricities must be matched. It is also essential
that a single performance metric be used for both
saccades and perception. In this study, humans were
asked to search a visual display to find a target. We
recorded the saccades that observers used to search the
display and their perceptual judgments of where the
target was located. We designed experiments such
that saccades and perception would have access
to the same visual information and used signal detection
theory (SDT) to quantify and compare the accuracy of
the perceptual and saccadic decisions under matched
conditions.
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A. Comparing the Information Mediating Saccadic and
Perceptual Decisions

Our first goal is to compare saccadic and perceptual per-
formance under conditions in which the visual informa-
tion available to both is approximately the same. As in
our earlier studies'? (see also Findlay®), we chose deci-
sion accuracy as our metric and compared the accuracy of
the perceptual decision after a brief presentation with
that of the first saccadic decision in an extended search.
Our observers searched a visual display with ten possible
target locations and reported their ten-alternative forced-
choice (10-AFC) perceptual decision. We used the eye
movement data to assign a 10-AFC saccadic decision to
each saccade by choosing the element location closest to
the saccadic end point. Thus, for both saccades and per-
ception, we measure the accuracy of a 10-AFC decision.
To match the processing times for saccades and percep-
tion, we measured performance in two separate condi-
tions. In both the eye movement (EM) and fixation (FIX)
conditions, the observer’s task was simply to find the tar-
get and report its location. In the EM condition, observ-
ers were free to use saccades to search the display, and we
measured the 10-AFC accuracy of the first saccadic deci-
sion and the saccadic latency. In the FIX condition, to re-
strict perception to have approximately the same amount
of time available to process the visual image as the first
saccade, we used a brief display (followed by a high-
contrast mask) and observers maintained central fixation
(there was no time to make a saccade). Central fixation
ensured that the eccentricity of the element locations was
matched for the saccadic and perceptual decisions. The
high-contrast mask limited the time available for percep-
tual processing to the stimulus presentation time. The
stimulus duration was chosen so that perceptual and sac-
cadic processing times were approximately equal (see Sec-
tion 2). Although we recorded the perceptual responses
for both the FIX and EM conditions, we are mainly inter-
ested in perception for the FIX condition because its per-
ceptual processing time is nearly matched to the saccadic
processing time. We do not compare saccadic perfor-
mance with EM perception (free viewing), because this
perceptual decision has additional information based on
up to 4 s of processing time and multiple fixations at dif-
ferent image locations. We report the EM perception
data separately because they may be of interest to some
readers.

B. Measuring How Saccadic and Perceptual Decision
Accuracies Depend on Salience

Our second goal is to measure how saccadic and percep-
tual decisions during a search depend on the salience of
the visual target relative to the distractors. To quantify
“salience,” we use stimuli with a wide range of signal-to-
noise ratios (SNRs) and use SDT to compare the mea-
sured perceptual and saccadic performances with each
other! and with the performance of the ideal observer.*®
To measure performance under a wide range of difficul-
ties, we choose five SNRs such that perceptual perfor-
mance for the most difficult condition was close to chance
while that for the easiest was close to perfect. Numerous
other studies have attempted to determine if and how sac-
cadic eye movements during a visual search task depend
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on the visual information in the stimulus image. Many
researchers have found that saccades are guided by visual
information,?>%71% while others have suggested that, under
some conditions, they are not.'' ™' We believe that one of
the reasons for the disparate results is that the various
studies used displays with very different target saliences.
Hooge and Erkelens? have shown that changes in salience
or discriminability can affect saccadic target selection and
fixation duration. We use a simple disk stimulus with
added external noise, which allows us to objectively quan-
tify salience as well as its effect on performance.

C. Measuring How Saccadic and Perceptual Decision
Accuracies Depend on Task

Our third goal is to determine how the type of search task
influences saccadic and perceptual performance. To in-
vestigate this, we examined saccadic and perceptual per-
formance in two different search tasks: a contrast-
detection task in which observers searched for a single
dim target disk embedded in a noisy background and a
contrast-discrimination task in which observers searched
for the highest-contrast target among ten suprathreshold
disks, again embedded in noise. Previous studies'!®
found qualitative differences in perceptual performance
between contrast-discrimination and contrast-detection
tasks. Itis, however, unknown if such a difference is also
evident in saccadic performance. If saccades and percep-
tion share visual processing, then saccadic performance
should have similar task-dependent differences. On the
other hand, if saccadic decisions are controlled by a differ-
ent type of neural processing, for instance a more
rudimentary/elementary processing, which is mostly sen-
sitive to the presence or the absence of an object and less
able to discriminate differences between objects, then it is
possible that the task type will affect saccadic and percep-
tual performance differently.

D. Modeling Saccadic and Perceptual Performance
with Signal Detection Theory Models

Our fourth goal is to determine if saccadic performance
can be well described by the same SDT model that has
been previously shown to provide a good explanation of
perceptual performance across a wide range of saliences
and a wide variety of visual tasks.>'671® Specifically, we
will use a suboptimal Bayesian model, which postulates
that observers make decisions by looking at the outputs of
noisy neural mechanisms specified by their template (re-
ceptive field) and internal noise level, to determine which
target location has the highest likelihood of containing
the target. Comparison of the model’s best-fitting pa-
rameters for saccades and perception will allow a succinct
and meaningful quantitative comparison of the neural
processing underlying spatial localization for saccades
and perception.

2. METHODS

A. Stimuli

The stimuli were displayed on a 21-in. Philips Brilliance
21A color monitor using the AT Vista video display system
hosted by a 486 personal computer. The monitor was run
in noninterlaced 60-Hz refresh-rate mode with 640
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X 486 resolution (pixel size 0.59 mm). At the 57-cm
viewing distance, the full display subtended 38° X 29°.
Luminances were measured by using a PhotoResearch
880 photometer and linearized by using a lookup table.
The stimuli were constructed by adding an 18° X 18°
noise pattern to a uniform gray background (31.6 cd/m?,
which corresponded to a lookup table value of 172). For
each pixel, the luminance was the sum of the gray back-
ground and a Gaussian-distributed, spatially uncorre-
lated noise sample (rms contrast 26%, power spectral den-
sity 2.4 X 107* deg?).

There were ten element locations, which were evenly
spaced around a circle of radius 5.9° centered on the fixa-
tion point. To minimize the observer’s spatial uncer-
tainty, each element (target or distractor) was presented
in the center of a 2.4° square outline (0.4 cd/m?). The tar-
get and the distractors were 0.35° diameter, Gaussian-
blurred (o = 3.5 arc min) disks, which were added to the
noise samples. In the contrast-detection experiment
[Fig. 1(a)l, the target was chosen to be at one of the ten
possible locations, and the other element locations merely
contained noise samples (equivalently, the distractors had
zero contrast). The target disk had five different peak
contrast values (13.2%, 19.8%, 26.3%, 32.9%, and 39.5%)
corresponding to five SNRs (2.0, 2.9, 4.2, 5.2, and 6.3, re-
spectively). In the contrast-discrimination experiment,
one location contained the target, and the nine other lo-
cations contained distractors. To minimize the effective

(b) Discrimination

(a) Detection

(c) High SNR
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Fig. 1. (a) Example of a stimulus image for the contrast-
detection experiment. The nontarget boxes contain only noise,
while the target box has a low-contrast disk added to the noise.
(b) Example of a stimulus image for the contrast-discrimination
experiments. The nontarget boxes each contain distractors of
equal contrast, while the target box has a higher-contrast disk.
(c) Eye movement data from an “easy” trial (SNR = 6.3) in the
contrast-detection experiment for observer JL. This trial con-
tained a single saccade to the target box, so the first saccadic de-
cision was correct. (d) Eye movement data from a “difficult”
trial (SNR = 2.0) in the contrast-detection experiment for ob-
server JL. This trial contained eight saccades. The first sac-
cade was to a distractor box, so the first saccadic decision was in-
correct. The second, sixth, and last saccades were to the target
box.

(d) Low SNR
L5
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positional uncertainty, we chose the distractor (pedestal)
contrast to be large enough so that it was easily detect-
able (d' > 4). The peak contrast of each distractor was
52.7%, and the target’s peak contrast was incremented by
values similar to those used in the contrast-detection ex-
periment, thereby producing five contrasts (65.9%, 72.5%,
79.0%, 85.6%, and 92.2%) corresponding to five SNRs (2.1,
3.1, 4.2, 5.2, and 6.3, respectively).2’ The maximum con-
trast that we could display was 130% (72.5 cd/m?), which
is high enough to ensure that the image luminance values
were rarely clipped (generally, <1% of pixels with a worse
case of 7%).

B. Experimental Procedures

Three observers (two authors, one naive) with normal vi-
sion participated in this experiment. They were asked to
search the display and find the target (the only disk in the
detection task and the brightest disk in the discrimina-
tion task) while viewing the stimulus binocularly in a
dimly lit room. On each trial, their eye movements and
perceptual decision were recorded. Head movement was
minimized by the use of a bite bar. Observers were re-
quired to fixate a central 1.2° X 1.2° fixation cross before
each trial began. They then initiated the trial with a
button press. After a delay of 500 ms, one of the search
images was presented for either a brief duration (150 ms)
or a long duration (4 s). Immediately following the pre-
sentation of the search image, a high-contrast noise field
(spatially uncorrelated noise with an rms contrast of 74%
and a power spectral density of 1.94 X 10 2 deg?) was
presented for 200 ms. Finally, a uniform gray (31.6
cd/m?) response image, which contained the box outlines
and a rotatable arrow, was presented. At the end of each
trial, observers indicated their 10-AFC perceptual deci-
sion by pointing the arrow at the element location that
they thought had contained the target, and then they
pressed a mouse button to record their decision. We did
not provide trial-by-trial feedback to our observers be-
cause we did not want to alter their natural oculomotor
behavior or, worse yet, differentially shape oculomotor
and perceptual behavior.

For both the detection and discrimination tasks, there
were two different stimulus durations that defined the
EM and FIX conditions. In the EM condition, observers
were given up to 4 s to search the display and find the tar-
get. In most earlier studies of saccades in visual search,
the observer’s task was to make a saccade to the target as
quickly as possible. To avoid biasing the observers’
search strategies and saccades, we chose not to give an
explicit instruction to saccade to the target or any other
eye movement instruction. The long duration used in
this condition gave the observers time to make many sac-
cades while the stimulus was still present. In the FIX
condition, the stimulus duration was 150 ms. As this du-
ration was less than the normal saccade latency, observ-
ers maintained fixation on the central cross for the whole
presentation. The 150-ms duration was chosen so that
the processing time available to perception was approxi-
mately matched to that available to the first saccades in
the EM condition. Pilot studies suggested that saccadic
latencies were ~240 ms, which corresponds to a saccadic
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processing time of ~150 ms, given the assumption of ~90
ms of delay between the decision to make a saccade and
its actual initiation.2>%2

Each day, observers ran four blocks (EM discrimina-
tion, EM detection, FIX discrimination, and FIX detec-
tion) in a random order. Each block consisted of 20 trials
at each of the five SNRs for a total of 100 randomly inter-
leaved trials. Each block was repeated 15 times, produc-
ing a total of 300 trials for each SNR (three repetitions of
100 different noise samples), each task, and each EM con-
dition. We reduced the effects of cognitive expectation?®
by using stimuli in which the target appeared in one of
ten known locations with equal probability and by ran-
domly interleaving all SNR conditions. We found similar
results in a previous experiment in which we blocked
SNRs.2* Observers ran two practice days before gather-
ing the data presented.

C. Eye Tracking

The position of the left eye was measured with an infra-
red (IR) video-based eye tracker (ISCAN Inc., custom-
built for NASA) sampling at 240 Hz, hardware synchro-
nized to our display monitor. An IR light source
illuminated the observer’s left eye, which viewed the
stimulus through a mirror that transmitted visible but re-
flected IR light. The tracker computed the horizontal
and vertical positions of the pupil in uncalibrated eye-
tracker coordinates. Both before and after each run, we
calibrated the eye tracker by having observers fixate a se-
ries of nine crosses arranged in a 12° X 12° grid.?® The
crosses were presented in a fixed pseudorandom order,
and each was shown at least twice. For each fixation, the
mean eye position and its standard deviation were calcu-
lated. The calibrated eye positions were computed as lin-
ear functions of the tracker outputs. Two sets of three
parameters were used to compute the horizontal and ver-
tical positions, respectively: an offset, a gain, and a
cross-talk term. The calibration parameters were deter-
mined by optimally fitting the mean eye-tracker outputs
to the known locations of the fixation points. The cali-
bration data were well fitted by these six linear param-
eters; the reduced y2 ranged from ~0.5 to ~1.5. The eye-
tracker positional precision was generally better than
0.15°, estimated from the mean standard deviation of eye
position during a fixation.

Despite the use of a bite bar, observers periodically
made small changes in their head position or orientation.
This generated small overall offsets in the position of the
pupil. Because we were interested in determining the
absolute gaze position of the observer (i.e., relative to the
earth-bound display), we needed to correct for changes in
the offset parameters caused by the possible small head
movements between trials. Thus, for each trial, we reze-
roed the offset parameters based on the initial fixation be-
fore each stimulus presentation. Inspection of the scan
paths for many trials verified that this approach did a
good job of correcting for occasional small head move-
ments.

D. Saccade Detection and Fixation Analysis
We used a low-pass filtered differentiator (—3-db cutoff at
42 Hz) to detect saccades. The total eye velocity (the
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square root of the sum of the squares of the horizontal
and vertical velocities) was compared with a threshold,
which was set to detect saccades larger than 0.7°. Blinks
were also detected and eliminated. The eye-position data
were analyzed to obtain a sequence of fixations separated
by saccades. For each fixation, we computed the mean
fixation location by averaging the position data from the
end of the prior saccade to the start of the subsequent sac-
cade. For the FIX conditions, we discarded trials in
which central fixation was not maintained throughout the
trial (1.7° window). For the EM conditions, we discarded
trials with anticipatory saccades (outside of the 1.7° fixa-
tion window with latency <90 ms). Few trials (~2%)
were discarded.

To compare the saccadic decisions with the perceptual
decisions, we converted the first saccade (outside of the
1.7° fixation window) in the EM conditions into a 10-AFC
choice. We defined the saccadic decision to be the ele-
ment closest to the saccade’s end point location.® This
method does not penalize hypometric saccades generated
in the correct direction. However, choosing an alterna-
tive, stricter decision criterion does not significantly affect
the results.! Inspection of the data showed that indeed
most saccades were directed unambiguously toward a
specific element location, i.e., few saccades were made to
regions near the decision boundaries between element lo-
cations. Examples of typical EM traces are shown in
Figs. 1(c) and 1(d). In high-SNR trials, observers typi-
cally made few saccades [Fig. 1(c)], while in the more dif-
ficult, low-SNR trials, observers made many saccades
[Fig. 1(d)]. While the entire saccadic scan path is poten-
tially interesting, because we are concerned with compar-
ing saccadic and perceptual performance under approxi-
mately matched temporal and spatial conditions, we limit
our analysis in this paper to the first saccadic decision. A
limitation of our analysis is that it thresholds the landing
position of the first saccade and neglects possible informa-
tion contained in the dynamics of the saccade or its exact
landing position. As has been recently noted?%2” many
search saccades are curved. Some of the saccades made
by our observers also appear to follow curved trajectories
and may contain additional information about saccadic
processing. We restrict our saccadic analysis to an ex-
amination of the 10-AFC saccadic decision, so that it is
commensurate with the 10-AFC perceptual decision.

E. Data Analysis

Because our tasks required finding a target signal in the
presence of noise, we used SDT to analyze the data. In
particular, this approach allows us to compare saccadic
and perceptual performance with that of the ideal ob-
server and to quantitatively measure task-dependent per-
formance differences. To do this, we transformed percent
correct into d’, an SDT measure of performance,* and
plotted performance as a function of SNR. For an N-AFC
task, the relationship between percent correct (PC) and
d’ is described by

2

+ —(x — d")?
PC(d’', N) = 100(2w)*1’2f dx exp —}

X [erf(x)]V 1. (@]
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F. Model Calculations

We begin by describing a simple SDT model without
uncertainty.*#>1%1°  We then describe an SDT model that
explicitly includes effects of intrinsic uncertainty (see Ap-
pendix A for mathematical details of the models). The
simple model (with zero uncertainty) assumes that the
observer makes a saccadic/perceptual decision by moni-
toring the output of visual mechanisms and choosing the
location that has the mechanism with the maximal re-
sponse. The observer monitors exactly one mechanism
corresponding to each possible target location (a total of
ten mechanisms). We assume that the response of each
mechanism is a Gaussian-distributed variable with equal
standard deviation o (corresponding to the sum of inter-
nal and external noise) and mean u, which is linearly pro-
portional to the element contrast. Thus all the mecha-
nisms responding to distractors have responses with
equal means up, while the mechanism responding to the
signal has a higher mean, ug. For this simple model,
performance depends only on the ratio of the difference
between the signal and distractor means to their stan-
dard deviation. This quantity is defined to be d' and is
linearly related to the SNR:

(us — up)
d' = — = a X SNR. (2)

o

The relationship between d’ and percent correct is de-
scribed by Eq. (1). The single free parameter, the slope «,
measures how good performance is relative to that of the
ideal observer. The best possible performance, that of
the ideal observer, is achieved when « is equal to unity.
Mismatches between the template that the mechanisms
use and the signal’s spatial profile, as well as internal
noise, produce values of « that are less than unity. This
simple model clearly cannot explain our detection data,
because it predicts that the d’ data lie on a line that
passes through the origin.

The SDT model with uncertainty?® has, in addition to
the slope parameter «, an additional free parameter, the
uncertainty number U.'%1%30 To explicitly incorporate
observer intrinsic uncertainty, this model assumes that
for each of the ten possible target locations, observers
monitor one mechanism matched to the target location
and U additional irrelevant mechanisms (orthogonal to
the signal template), which are also orthogonal to each
other (independent responses). Again, the responses of
all the mechanisms have the same standard deviation.
The mean response of the irrelevant mechanisms is zero
because they are orthogonal to the signal and the distrac-
tors. The mean response of the mechanisms responding
to the distractors/target is proportional to the contrast of
the distractors/target, and the difference between the tar-
get and distractor means is proportional to the SNR. As
above, a decision stage monitors the output of all of the
mechanisms and chooses the location corresponding to
the mechanism with the largest response.?! This model
correctly chooses the signal location if the mechanism re-
sponding to the signal or any of the irrelevant mecha-
nisms corresponding to the signal location has the highest
response, and it is incorrect if any of the other responses
is highest.
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Fig. 2. Effects of the two fitted parameters, alpha (a) and un-
certainty (U), on the model predictions. The top graph shows
the effect of U on detectability for « = 0.5. The bottom graph
shows the effect of @ on detectability for U = 4.

To illustrate the effects of the two fitted parameters,
slope (@) and uncertainty (U), plots of the model predic-
tions are shown in Fig. 2. The top graph of Fig. 2 plots
performance for three different U values with « fixed at
0.5. For U = 0, there is no uncertainty and the detect-
ability is a linear function of SNR with slope equal to a.
As U increases, overall performance decreases and the
plots become curved for low SNRs and are approximately
straight lines for higher SNRs. The bottom graph of Fig.
2 plots performance for three different « values with U
fixed at 4. Performance is best for high values of a and
decreases as a decreases. Changing « is equivalent to a
linear rescaling of the x axis.

3. RESULTS

A. Matching Visual Processing for Saccadic and
Perceptual Decisions

The brief display duration in the FIX condition was cho-
sen so that the perceptual processing times for this con-
dition were similar to the saccadic processing times in the
EM condition; yet we need to measure the actual saccadic
latencies to determine how well the two were matched.
The retinal eccentricities of the element locations were
identical for FIX perception and EM saccades because in
the FIX condition central fixation was required through-
out the trial, and, for EM saccades, the initial saccade
was also based on central fixation.

The visual processing time available to make a saccadic
decision is shorter than the corresponding saccadic la-
tency because there is a delay between the time the deci-
sion to execute a saccade is made and the time saccadic
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execution begins. We assumed that this delay was ~90
ms based on previous empirical results.?»?2 Thus, for
processing times to be equal, the saccadic latencies should
be 90 ms longer than the 150-ms display duration in the
FIX condition, and latencies should be similar across SNR
and task. Figure 3 shows the median latencies of the
first saccade in the EM condition plotted as a function of
SNR for the detection and discrimination tasks. For all
three observers, the saccadic latencies did not depend
strongly on task or SNR. The perceptual and saccadic
processing times were well matched for two of the observ-
ers, BB and JL.. Their overall median saccadic latencies
(BB, 229 ms; JL, 242 ms) were ~86 ms longer than the
FIX display duration. The third observer, LS, had
shorter saccadic latencies (median of 158 ms), and thus a
saccadic processing time of ~68 ms, which was much
shorter than the 150-ms perceptual processing time.

Saccadic latencies for all three observers decreased by
~25 ms across the threefold increase in SNR. Thus the
increased saccadic decision accuracy observed at higher
SNRs (see below) cannot be caused by a speed—accuracy
trade-off. The weakness of the dependence of latency on
SNR is not surprising, as all of the SNRs were randomly
interleaved; i.e., before each trial, observers were un-
aware which SNR would be presented, so they could not
adjust their strategy. Latencies for the discrimination
task (solid symbols) were on average ~15 ms longer than
those for the detection task (open symbols). This shows
that the task-dependent performance differences de-
scribed below are also not due to a speed—accuracy trade-
off.

Figure 4 shows histograms of the latency distributions
(accumulated over SNR) for both correct and incorrect
saccadic decisions in both the detection and discrimina-
tion tasks. For all observers, in both tasks, the distribu-
tions were unimodal and similar for the incorrect and cor-
rect decisions. Correct trials tended to have slightly
shorter latencies (~10 ms) than incorrect trials. This is
also inconsistent with a speed—accuracy trade-off and pro-
vides strong evidence that the same decision strategy was
used on both correct and incorrect trials.

300+
o 250
g
S’
> 2004
o
[=]
D
g 1504
-]
q - - . . .
.S 100+ Discrimination Detection
B - LS o~
2 50 - -@- BB -
-h- JL —A—
0 - T T T T T T 1
1 2 3 4 5 6 7
SNR

Fig. 3. Median saccadic latencies (EM condition) as a function
of SNR for the detection (open symbols) and discrimination (solid
symbols) tasks for each of the three observers. In this figure,
the latencies for correct and incorrect saccadic decisions have
been combined.
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Fig. 4. Histograms of the saccadic latencies (EM condition) for
correct (solid circles) and incorrect (open squares) saccadic deci-
sions for each of the three observers (bin size is 25 ms). In this
figure, the latencies for the different SNRs have been combined.

B. Saccadic and Perceptual Decision Accuracy

In Fig. 5, we compare the raw performance data (propor-
tion correct) on the detection task with those on the dis-
crimination task for naive observer JL.. The accuracies of
all three decisions (first saccade, perception limited to 150
ms, and perception up to 4 s) show similar task-
dependent differences. For low SNRs, performance on
the detection task is worse than that on the discrimina-
tion task. For increasing SNR, detection performance
improves faster than discrimination performance. At the
highest SNRs, detection performance is better than or
equal to discrimination performance.

To better interpret the performance data, we converted
the data to d' units and replotted them in Fig. 6. For all
three observers, both the saccadic and perceptual data
show similar SNR trends and similar task dependencies.
For the discrimination task, the detectability is approxi-
mately directly proportional to SNR (a line through the
origin). For the detection task, detectability also appears
to be a linear function of SNR but to have a higher slope
and a negative y intercept. To quantify these task-
dependent differences, we fitted the data with an SDT
model, described by Eckstein et al.'® The model fits are
plotted as solid (FIX perception), dashed (saccades) (Fig.
6), and dotted curves (EM perception).

Our primary interest is comparing the accuracy of the
first saccadic decision with that of the perceptual decision
in the FIX condition (solid circles and open squares, re-
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Fig. 5. Proportion of correct decisions for the discrimination (solid circles) and detection (open squares) tasks for observer JL (error bars
represent standard errors): (a) accuracy of the perceptual decision in the fixation (FIX) condition, (b) accuracy of the first saccadic
decision in the EM condition, (c) accuracy of the final perceptual decision in the EM condition.
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Fig. 6. Accuracy of the FIX and EM perceptual decisions and
the first saccadic decision for both the detection and discrimina-
tion tasks. The accuracy in d’ units is plotted as a function of
SNR. The solid circles show the accuracy of the first saccadic
decision, the open squares show the perceptual accuracy in the
FIX condition, and the open triangles show the perceptual accu-
racy in the long-duration EM condition. The lines through the
points are optimal fits of the signal detection uncertainty model.
Error bars show the standard error of the mean.

spectively). For the two observers with approximately
matched processing times (JL and BB; see Subsection
3.A), in both the detection task (Fig. 6, left-hand plots)
and the discrimination task (Fig. 6, right-hand plots), sac-
cadic and perceptual (FIX) accuracies are very similar.

In the detection task, they are not significantly different
(p > 0.05, two-way within-observer analysis of variance).
In the discrimination task, the overall accuracy of sac-
cades is slightly but significantly (p < 0.05) lower (on av-
erage, BB is 8% lower and JL is 11% lower) than that of
(FIX) perception. The short saccadic latencies of the
third observer (LS) (see Subsection 3.A) likely explain
why his saccadic accuracy is significantly (p < 0.001)
lower than his (FIX) perceptual accuracy for all SNRs in
both the detection and discrimination tasks. Note, how-
ever, that, even for this observer, the task dependencies
are similar for perception and saccades.

We also analyzed the accuracy of the perceptual deci-
sion in the long-duration EM condition (the open tri-
angles in Fig. 6) and found that it is significantly better
than that of the first saccade and that of perception in the
short-duration FIX condition at all SNRs. This is not
surprising and is the result of at least two important
factors.! First, in the EM condition, observers can ac-
quire additional stimulus information by foveating poten-
tial target locations, while the first saccade and percep-
tion in the FIX condition have access only to peripheral
information. Second, in the EM condition, perception
has up to 4 s of processing time, while the first saccadic
and perceptual (FIX) decisions are limited to ~150 ms.

C. Efficiency Analysis

To quantify how well humans perform a task, it is useful
to measure how much of the available stimulus informa-
tion they use to make their decision, employing a metric
that is independent of task and task difficulty. This is
generally done by comparing human performance with
the best possible performance (that of the ideal observer)
by computing the absolute efficiency,®®? which is defined
as the square of the ratio of the human-observer d’ to the
ideal-observer d’ (which is the SNR). Figure 7 plots the
absolute efficiency of the first saccade and of perception
(FIX) as a function of SNR.

For detection, the two observers with properly matched
processing times (BB and JL) had nearly identical abso-
lute efficiencies for saccades and perception, but, for dis-
crimination, their saccadic absolute efficiencies were
lower than their perceptual absolute efficiencies (on aver-
age, 14% and 21% lower, respectively). For both tasks,



1348 J. Opt. Soc. Am. A/Vol. 20, No. 7/July 2003

the observer with improperly matched processing times
(LS) had saccadic efficiencies that were much lower than
his perceptual efficiencies (on average, 58% lower for de-
tection and 52% lower for discrimination).

For all observers, both first saccades and perception
showed similar trends as a function of SNR and task. In
the discrimination task, absolute efficiencies were nearly
constant for both saccades and perception at all SNRs (ex-
cept for BB, who showed a small decrease in efficiency as
SNR increased). In the detection task, absolute efficien-
cies are low for the lowest SNR, increase as SNR in-
creases, and are similar to those for the discrimination
task at the highest SNR.

To compare the amount of information used by first sac-
cades and by perception under approximately matched
conditions, we also computed their relative efficiency, de-
fined as the ratio of the squared d’ values.! For all ob-
servers, the relative efficiency of saccades to perception is
nearly independent of SNR. For detection, the two ob-
servers with properly matched processing times had
mean relative efficiencies (BB, 1.03%; JL, 1.06%) that
were not significantly different from 100% (p < 0.05 ¢
test), while the observer with improperly matched pro-
cessing times (LS) had a mean relative efficiency that was
much lower, 42%. For discrimination, BB and JL had
high mean relative efficiencies (86% and 79%, respec-
tively), while again LS had a lower mean relative effi-
ciency (48%).
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Fig. 7. Absolute efficiencies for (FIX) perception and saccades
plotted as a function of SNR for the three observers. The model
predictions are shown as the curves [perception (solid), saccades
(dashed)]. For the detection task, efficiency increased as SNR
increased, while for the discrimination task, efficiency was
nearly constant as a function of SNR.
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Fig. 8. Maximum-likelihood values [from the fits to Eq. (A7)] of
the slope parameter («) for FIX perception and saccades. Error
bars represent 95% confidence intervals. For both saccades
(solid symbols) and perception (open symbols), the slopes for de-
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Fig. 9. Maximum-likelihood values [from the fits to Eq. (A7)] of
the uncertainty number (U) for the detection task for FIX percep-
tion (open bars) and the first saccade (solid bars). Error bars
represent 95% confidence intervals. For the discrimination
task, the best-fitting uncertainty was zero for all observers for
the saccadic data and both sets of perceptual data (data not
shown).

We also examined the efficiency of the perceptual deci-
sion in the EM condition (not shown). The absolute effi-
ciencies for this condition were consistently higher than
those for both the saccadic and (FIX) perceptual condi-
tions, although the task and SNR trends were similar.
Again, for all observers, absolute efficiency increased as
SNR increased for detection (JL, from 21% to 50%; BB,
from 31% to 55%; LS, from 37% to 56%) but was approxi-
mately independent of SNR for discrimination (means:
49% for JL, 71% for BB, 48% for LS). To quantify how
much perceptual accuracy improves in the EM condition
relative to that in the FIX condition, we computed their
relative efficiency. For both tasks, the relative efficien-
cies were similar and were nearly constant as a function
of SNR. For detection, the mean relative efficiencies
were 33% for JL, 36% for BB, and 38% for LS. For dis-
crimination, the mean relative efficiencies were 35% for
JL, 38% for BB, and 39% for LS.
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D. Model Fits

To better understand saccadic and perceptual perfor-
mance, we fit the decision accuracy data with a model
based on SDT (see Section 2 and Appendix A). The model
predictions [Eq. (A7)] are similar to the data and are
shown as the curves through the data in Fig. 7. The fit-
ted parameters summarize performance, facilitate com-
parison between saccades and perception, and help quan-
tify task effects. The maximum-likelihood fitted values
for the two model parameters, « and U, for first saccades
and perception (FIX) are shown in Figs. 8 and 9.

The fits emphasize the two main task effects, which
were shared by both saccades and perception. First, the
slope parameter («) was significantly lower for discrimi-
nation than for detection for all three observers (i.e., all
the points are below the diagonal in Fig. 8). Second, the
discrimination data were best fitted with zero effective
uncertainty (U = 0, not shown in Fig. 9),3* while the de-
tection data were best fitted by effective uncertainties,
which were significantly (p < 0.05) greater than zero
(Fig. 9). The fits also emphasize two similarities between
saccadic and perceptual (FIX) performance, which were
found across both tasks. First, for the observers with ap-
proximately matched processing times, the slopes () for
saccades were similar to, but slightly lower than, those
for perception (FIX). Second, the uncertainties (U) for
saccades were not significantly different from those for
perception (p > 0.05).

In the EM condition, the accuracy of the final percep-
tual decision was also well predicted by the model. The
slopes (@) for discrimination were 0.70, 0.84, and 0.69 and
for detection were 0.78, 0.78, and 0.82 for JL,, BB, and LS,
respectively. As for the two other conditions, the effec-
tive uncertainty (U) for discrimination was zero for all
three observers, while U for detection was 5, 2, and 2 for
JL, BB, and LS, respectively, lower than those for the first
saccade and for perception (FIX).

4. DISCUSSION

When asked to find a target in a visual search task, ob-
servers make saccadic eye movements to foveate display
regions of interest. Each saccade requires a neural deci-
sion to choose when to make the saccade and what image
region to foveate next. Our experiments sought to com-
pare the visual processing used to make saccadic deci-
sions with that used to make perceptual decisions. We
hypothesized that if similar neural processing mediates
both decisions, and perception and saccades are presented
with equal visual information, then (1) the accuracy of
perceptual and saccadic decisions should be similar, (2)
the type of task should similarly affect both decisions, and
(3) target salience (SNR) should modulate saccadic and
perceptual performance in a similar manner.

Our results show that when retinal eccentricity and
processing times are properly matched, the accuracy of
the first saccadic decision is similar to that of perception
for a wide range of target saliences. In the detection
task, the efficiency of the perceptual (FIX) and first sac-
cadic decisions are indistinguishable, while in the dis-
crimination task, the first saccade is slightly less efficient.
Saccadic and perceptual performance also show parallel
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task effects, most notably increased effective uncertainty
for detection. Furthermore, both saccadic and perceptual
accuracies are well fitted by an SDT model using similar
fitted parameters. Last, as expected, for both tasks,
when observers were allowed to make saccadic eye move-
ments and had longer search durations, their final per-
ceptual decisions were much more accurate.

A. Caveats

1. Mismatches in Perceptual and Saccadic Processing
Times

The two observers BB and JL, who had median saccadic
latencies that correspond to approximately equal saccadic
and perceptual processing times, also had similar percep-
tual and saccadic performance. The third observer, LS,
had considerable shorter saccadic latencies, which pro-
duced much shorter processing times for saccades than
for perception in the FIX condition. This was associated
with LS’s saccadic accuracies being considerably lower
than his perceptual accuracies. Previous visual search
studies®®? have found that increasing fixation duration
improves both saccadic and perceptual accuracy.

One explanation of these performance improvements is
that increasing display duration causes the effective in-
ternal noise to decrease. Similarly, physiological
studies®~38 have found that for brief displays, the SNR of
neural responses increases as display duration is in-
creased. LS’s data and the fits of the SDT model are con-
sistent with this explanation. Because LS had approxi-
mately equal latencies for each SNR and both tasks (Fig.
4), the mismatches in processing time should be similar
for all SNRs and produce equal differences in internal
noise. The effect of adding equal internal noise to all the
visual processing mechanisms in our SDT model is a de-
crease in slope. This is precisely what we find for ob-
server LS, who had shorter saccadic processing times. In
the discrimination task, LS’s slope for perception was
0.60, while his slope for saccades was only 0.51. In the
detection task, LS’s perception and saccades had nearly
equal uncertainty parameters, but his slope for percep-
tion was 0.43 while his slope for saccades was only 0.30.
LS’s relative efficiencies are approximately constant
across SNR, which is also consistent with a constant dif-
ference in the amount of internal noise.

2. Effects of Visual Masks

We chose a high-contrast noise mask to limit perceptual
processing in the FIX condition, so that saccades and per-
ception had approximately equal processing times. The
actual effect of the mask on perception is more complex.
One possibility is that the mask was not entirely effective
and allowed some perceptual processing to continue
longer than estimated. Another possibility is that the
mask was too effective and disrupted perception (back-
ward masking), which would reduce the effective percep-
tual processing time. Thus mask efficacy problems could
produce effects similar to mismatches in perceptual and
saccadic processing times. These differences would
likely be similar for each SNR and produce an overall
improvement/decrement in performance. Specifically, in
our SDT model, increases/decreases in each mechanism’s
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noise correspond directly to decreases/increases in the
slope parameter in our fits. For example, the slightly
larger slope parameters for perception compared with
those for saccades for observers BB and JL. may be due to
incomplete masking, allowing for slightly longer effective
perceptual processing times. It is also possible that the
mask had a smaller effect on perception in the discrimi-
nation task than in the detection task, which would ac-
count for the slightly lower relative efficiencies in the dis-
crimination task.

3. Speed—-Accuracy Trade-offs

Although saccadic latencies were largely independent of
SNR (Fig. 3), a detailed examination of the latency data
for BB and JL shows that there is a small decrease in sac-
cadic latency as SNR increases. These latency changes
are less than 20 ms for the detection task (solid curves)
but are larger for the discrimination task (dashed curves),
with the highest SNR having a latency that is shorter
than the lowest SNR by approximately 33 ms for BB and
49 ms for JL. An examination of the model fits to the
data (Fig. 6) also shows that for BB’s and JL’s saccadic
discrimination data, the measured accuracy for the high-
est SNR is slightly below the model predictions. This
small but systematic deviation from the model may be ex-
plained by the decreases in saccadic processing times pro-
duced by the shorter saccadic latencies at these SNRs
(i.e., a speed—accuracy trade-off). This dependence of la-
tency on SNR is somewhat surprising given that the
SNRs were randomly interleaved and that others have
not observed such an effect.’

Our finding that, for a given SNR, saccadic decision ac-
curacy is largely unaffected by saccadic latency (Fig. 4)
may seem contradictory to the potential speed—accuracy
trade-off described above and to previous findings®%%
that increasing saccadic latency (fixation duration) im-
proves both saccadic and perceptual accuracy. This may
be reconciled by considering the effect of our high level of
external noise. For each SNR, the addition of external
noise makes the difficulty of each trial depend on the spe-
cific instance of external noise that was added to that
trial. For example, on some trials, the noise added to the
target location might be similar to the target shape (tem-
plate) and contrast, which would increase the response of
a visual mechanism responding to the target location and
make the task easier. Alternatively, on other trials, the
noise added to the target location might be similar to the
target shape (template) but of opposite contrast, which
would decrease the response of a visual mechanism re-
sponding to the target location and make the task more
difficult. It is possible that the saccadic latency depends
in part on the specific noise sample presented on each
trial, with “easy” trials having a shorter latency and “dif-
ficult” trials having a longer latency. If this were true, it
would diminish any observable effect of saccadic latency
on saccadic decision accuracy, because the short-latency
trials would be “easier” and have a higher chance of being
correct than the more “difficult,” long-latency trials.

B. Effects of Task on Saccades and Perception
All of our observers show clear parallel task-dependent
differences in saccadic and perceptual (FIX) performance
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(Figs. 5 and 6). To quantify these differences, we fitted
the data to an SDT model with two free parameters, a
slope (@) and an uncertainty (U). We found that all three
observers had significantly lower slopes and uncertainties
in the discrimination task than in the detection task for
both saccades and perception (Figs. 8 and 9). The slope
decreases were approximately equal for saccades and per-
ception (JL, 29% versus 33%; BB, 22% versus 17%; LS,
35% versus 28%). The similarity of the decrease for sac-
cades and perception suggests that it may result from a
similar cause. One possible explanation is a decelerating
contrast nonlinearity. In our experiments, the noise
amplitude was held fixed, and the SNR was varied by
changing the target contrast. While the contrast
increments were approximately equal for the detection
and discrimination tasks, the detection task had a zero
contrast pedestal and the discrimination task had a
52.7% peak contrast pedestal. Thus a decelerating con-
trast nonlinearity would lower the responses to the
higher contrasts more than it would to the lower con-
trasts, resulting in the observed slope change. A similar
possibility is that there is contrast-dependent internal
noise.'>19293%9  Experiments that vary the external noise
level and the pedestal contrast would provide further in-
formation about the reason for this decrease in slope (e.g.,
see Refs. 15 and 39).

In the model, the discrimination data were best fitted
with the uncertainty number U equal to zero for all three
observers, while each of the fits to the detection data pro-
duced nonzero uncertainties. The uncertainty param-
eter quantifies one aspect of the task-dependent perfor-
mance differences; the discrimination data are fitted well
by a line passing through zero, while the detection data
are not. But this difference should not be interpreted as
implying that observers monitor more detectors in the de-
tection task than in the discrimination task. In the
model, observers monitor one relevant mechanism at each
possible target location and U additional, orthogonal ir-
relevant channels. In the detection task, for low-contrast
targets (SNRs), the irrelevant channels that respond only
to the noise can often produce the largest response and
cause errors. In the discrimination task, the addition of
orthogonal irrelevant channels would not affect perfor-
mance much at all. The channels corresponding to the
distractors produce large responses, which are nearly al-
ways higher than those of the additional irrelevant chan-
nels (which do not respond to the pedestal, because they
are orthogonal to it). In fact, in our discrimination task,
the contrast of the distractors was higher than the high-
est target contrast that we used in the detection task.
Thus, when discriminating between the relatively high-
contrast distractors and the higher-contrast target, the
zero-mean, irrelevant channels have little effect.?* We
verified that the model predictions for the discrimination
task are nearly unchanged if the number of irrelevant
channels is set to be equal to that of the detection task.
Thus, while the detection and discrimination tasks pro-
duce differences in performance that appear to be related
to stimulus uncertainty, this effect may mainly reflect dif-
ferences in the stimuli rather than differences in the
number of visual mechanisms used to process the stimu-
lus.
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C. Performance Improvements Due to Active Search
Previously, we reported that, not surprisingly, allowing
observers to make eye movements and extending the
stimulus duration produced substantial improvements in
perceptual performance in a detection task.! Here, we
replicate these findings and extend them to a discrimina-
tion task (Fig. 6). For all observers, the absolute efficien-
cies of the FIX perceptual decisions are less than half as
high as the absolute efficiencies of the EM perceptual de-
cisions.

There are two major differences between the EM per-
ception condition and the two other conditions: saccades
and FIX perception.! First, in the EM perception condi-
tion, observers had a much longer processing time (up to
~4000 ms) than in the two other conditions (~150 ms).
Second, because observers were allowed to make saccadic
eye movements, they could foveate the possible target lo-
cations. The stimulus duration in the EM condition was
long enough for observers to fixate most, if not all, of the
target locations, while in the two other conditions, pro-
cessing was based on a single central fixation, with the el-
ement locations at a fixed eccentricity. The EM data
show that observers did make saccades to fixate many of
the possible target locations. The number of saccades ob-
servers made on each trial depended on the SNR. Trials
with high SNRs produced fewer saccades, while the diffi-
cult trials with low SNRs produced more saccades.
Analysis of the scan path can be used to measure how
task information accumulates over saccades.%4!

Despite these eccentricity and duration differences, the
EM perceptual data were also well fitted by the SDT
model. The ability to saccade to target locations and fo-
veate them is likely to have two effects on performance.
First, the smaller foveal receptive fields and the higher
receptive field density make it likely that observers would
be able to utilize visual processing mechanisms, with re-
ceptive field shapes better matched to the target spatial
profile.#?  This suggests that the slope parameter values
for the EM perception condition should be higher than
those for the FIX perception condition. Indeed, all ob-
servers showed large increases in the slope parameter for
both tasks (mean increases were 29% for detection and
59% for discrimination). Second, observers would be
likely to have better information about the location and
the shape of the target and monitor fewer irrelevant
mechanisms, which would reduce the effective uncer-
tainty parameter for the detection data. Indeed, for the
detection task, U for EM perception was lower than that
for FIX perception (mean: 3.0 versus 10.1). For the dis-
crimination task, the effective uncertainties were zero for
both FIX and EM perception.

D. Absolute and Relative Efficiencies

Although it may appear obvious, the degree to which sac-
cades are guided by visual information must depend on
the salience of the visual information available. At one
extreme, if little or no visual information is available, the
neural decisions that control saccade generation will
likely be dominated by internal noise or influenced by cog-
nitive strategies, and the saccades will appear to be un-
correlated with visual information. On the other hand, if
the visual information is highly salient, the neural deci-
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sions will nearly always generate “correct” saccades to the
target, and saccades will clearly be guided by visual infor-
mation, but because the task is so easy, almost any visual
mechanism would achieve similar performance. It is
therefore impossible to determine “how” and “which” vi-
sual information is used. Thus the disparate results
about which visual features such as color,>1112:2643
shape,®111244 and symbology'® are used to guide saccades
cannot be disentangled without measuring the role of sa-
lience. Hooge and Erkelens®® and we! showed that vary-
ing salience can change how much saccades appear to be
guided by visual information, and it was suggested that
target salience was the key to resolving the apparently
conflicting results. To quantify how much and how effi-
ciently saccades are guided by visual information, we
used displays containing noise with known statistics and
signals of varying strengths. This type of display al-
lowed us to use SDT to measure the absolute efficiency
with which the visual information is being used and to di-
rectly compare performance in different tasks and at dif-
ferent signal strengths (saliences) by computing efficien-
cies.

For the detection task, the absolute efficiencies of the
three performance measures all increase as SNR in-
creases. As discussed in Section 3, this appears to be due
to uncertainty effects, which have a larger effect on effi-
ciency for the low SNRs. Thus the detection absolute ef-
ficiencies are lower than those for discrimination for the
lowest SNRs but are similar for the highest SNRs. The
absolute efficiency of the first saccade ranged between 7%
and 29%, which is comparable with the previously mea-
sured efficiencies ranging from 4% to 20% in a similar
task.! The relative efficiency of saccades to FIX percep-
tion is nearly independent of SNR for all three observers
and is ~1.0 for the two observers with matched process-
ing times, BB and JL. As discussed below, this similarity
in performance provides evidence, but not proof, that the
two share a performance-limiting, visual processing
mechanism.

For the discrimination task, absolute efficiencies are
approximately constant for the different SNRs for all
three performance measures. Thus, for example, for ob-
server BB’s saccadic decisions in the EM condition, while
the percentage of correct decisions ranges from 39% for
the lowest SNR to 82% for the highest SNR, this apparent
difference in performance reflects the difference in the
task difficulty and the amount of visual information avail-
able. The absolute efficiencies show that for both of
these SNRs, the observer used approximately 20% of the
information available to the ideal observer. The relative
efficiency of saccades to FIX perception is nearly indepen-
dent of SNR for all three observers and is ~83% for the
two observers with matched processing times, BB and JL.
While this similarity in efficiency suggests that the per-
ceptual and saccadic decisions share similar visual pro-
cessing mechanisms,*® other interpretations are possible.

As explained in Appendix A, d’ can be expressed as the
ratio of the overlap of the receptive field with the target to
the total noise, where the total noise is the sum of a fixed
external noise term and an internal noise source. Thus
any process for which this ratio remains fixed would pro-
duce the same performance. For example, if perception
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were performed by mechanisms with receptive fields very
well matched to the target and high internal noise levels,
and saccades were controlled by mechanisms with large
receptive fields poorly matched to the target and low in-
ternal noise levels, then, although the mechanisms would
be very different, the performances could still be identi-
cal. Thus, although our results are consistent with per-
ception and saccades sharing similar visual processing
mechanisms, with saccadic processing containing a small
additional noise source to account for its slightly lower ef-
ficiency, it remains possible that the visual processing for
each has different receptive fields and internal noise
sources and that the similar performance occurs by
chance. Measuring performance for a number of exter-
nal noise levels would help resolve this issue.*®

It is interesting that the relative efficiency of saccades
to perception is higher for the detection task than for the
discrimination task for all three observers. One possible
explanation is that, for the saccadic system, it is most im-
portant to detect and localize objects and less important
to discriminate between them. To examine this issue fur-
ther, we have also measured perceptual and saccadic per-
formance in a “higher-order” search task: letter
discrimination.*’

5. CONCLUSION

In two types of visual search tasks, contrast detection and
discrimination, we have measured human performance in
three ways: (1) perceptual accuracy with long display
duration and free eye movements, (2) decision accuracy of
the first saccade, and (3) perceptual decision accuracy
with short display durations and central fixation. We
have shown that each of these performance metrics can be
well fitted by an SDT search model with two free param-
eters: a slope and an uncertainty. The detection data
required a nonzero uncertainty parameter, while all the
discrimination data were fitted best with zero uncer-
tainty. The two observers for which the processing times
were well matched had detection accuracies for percep-
tion and saccades that were indistinguishable and had
discrimination accuracies that were nearly identical. Fi-
nally, all observers showed similar task-dependent and
salience-dependent trends for both perception and sac-
cades. These results show that measurements of the ac-
curacy of the first saccade provide much insight about the
observer’s perceptual state at the time of the saccadic de-
cision. These results provide evidence that saccades and
perception share a similar visual processing mechanism,
perhaps in the superior colliculus,?”*3-% the frontal eye
fields,”>52 the lateral interparietal cortex,?>~®° or the infe-
rior temporal cortex.?®

APPENDIX A

SDT models* have been successfully used to predict hu-
man perceptual ability to localize targets in visual search
experiments for tasks with white-noise backgrounds® and
more realistic backgrounds.’”®® They can accurately
predict human detection of a target among a set of dis-
tractors differing from the target along a single physical
attribute!” or many.!®%° Here, we describe our imple-
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mentation of a SDT model for a visual search task in
which we assume that there are N possible nonoverlap-
ping target locations.

The stimulus is specified by the contrast at each pixel.
Because the possible target locations are far apart, for
simplicity we will denote the contrast values at a pixel
(x, y) centered on target location k2 by c,(x, y). The
stimulus is created by the following steps:

1. Generating a noise background by randomly choos-
ing the contrast of each pixel n,(x, y) from independent
Gaussian distributions with identical standard deviation
op and zero mean.

2. Adding the target (or the distractor) contrast to the
noise background. The target contrast at location (x, y)
is Apt(x, y), where Ay is a constant scaling the overall
contrast, which depends on the SNR. Because the dis-
tractor spatial profile is identical to the target, the dis-
tractor contrast is Apt(x, y) (Ap = 0 for the detection
task and is constant for the discrimination task). The co-
efficients ¢(x, y) (or target template) describe the spatial
profile of the target (and distractors) and are normalized
so that =, [#(x, w2 =1

1. Ideal Observer

The ideal observer optimally uses the image data to
achieve the best possible performance, the highest local-
ization accuracy. Peterson et al.% have shown that un-
der these stimulus conditions, when the target appears
with equal probability at each of the IV possible locations,
the ideal observer computes the correlation R; between a
filter that exactly matches the target’s spatial profile
t(x, y) and the image contrast values c;(x, y) at each of
the i possible signal locations, and then chooses the loca-
tion i that has the largest response R;:

R, = X t(x, y)ei(x, y). (A1)

X,y

It can be shown that all of the responses R; are Gaussian-
distributed random variables with standard deviation
op. The responses corresponding to distractors have
means Ap, while the response corresponding to the tar-
get has mean Ay .

For these assumptions, Green and Swets* showed that
the proportion of correct localization decisions depends
only on the difference of the means divided by their com-
mon standard deviation, and they have named this quan-
tity d’. Because d’ of the ideal observer is the ratio of
the signal to the noise in the stimulus, it is also referred
to as the SNR:

MT — MD Ar—Ap
d; = = = SNR, (A2)

OR OE

where pp is the mean response of a mechanism to the sig-
nal, up is the mean response of a mechanism to the dis-
tractors, and oy is the standard deviation of the response
of the template. The probability of a correct decision (P,)
is equal to the probability of the response of the mecha-
nism corresponding to the target being greater than the
responses of the N — 1 mechanisms corresponding to the
distractors:
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Po(d', N) = f “axP(Ry = x)P(all Rp < x),
(A3)

+x
Po(d', N) = 100(27) ~N? f dx exp

f dy exp(?)

Equation (A4) is used to convert decision accuracy in an
N-AFC task from percent correct units to d’ units.

2

(x — d’)T

N-1

X (Ad)

2. Modeling Human Performance

We assume that humans make their decision by examin-
ing the output of visual mechanisms and choosing the lo-
cation with the largest response. We assume that hu-
mans use mechanisms with filters (receptive fields)
f(x, y) that may be not perfectly matched to the target’s
spatial profile #(x, y) and that the visual processing
mechanisms have an additional internal noise source,
which represents variability in firing rate and decision
criteria. Specifically, we assume the following:

1. The filter coefficients f(x, y) describe the mecha-
nism’s response to the contrast at each pixel. The coeffi-
cients are normalized to unity, so that =, ;[ flay)]? =1

2. The response of each mechanism, R;, is calculated
by summing the responses to each pixel and adding inter-
nal noise N;: R; = N; + 3, f(x, y)c;(x, y).

3. The internal noise values N; are Gaussian distrib-
uted with zero mean and standard deviation o; and are
independent of each other.

4. The response of each mechanism to the stimulus
can be shown to be a Gaussian-distributed random num-
ber.

a. Its mean is determined by the stimulus strength
at its location, A;, and the overlap of the receptive field
with the target template: u; = A;Z, f(x, y)t(x, y).

b. Its standard deviation is determined by the inter-
nal and external noise levels. The external noise stan-
dard deviation is equal to the standard deviation of
each pixel, oy, because the filter is normalized to unity.
The total noise is the sum of the internal and external
noise sources: oz = or + o%.

To fit the discrimination data, we assume that there
are exactly N visual mechanisms, one centered on each
possible target location. Thus there are N — 1 mecha-
nisms that respond to distractors, each with a mean equal
to wup =ApZ, ,flx, y)t(x, y), and there is a single
mechanism responding to the target with mean ugp
= Ap2, ,flx, y)t(x, y). Then

(Ap — Ap) > flx, )t(x, y)
X,y
Joi + o?

> flx, y)t(x, ¥)
X,y

= SNR x . A5
[1+ (o7/op)]"? (4%
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Thus human performance measured in d’ units is a con-
stant times the SNR. We call this constant the slope, «,
and determine its value by fitting the data:

> flx, ytx, ¥)
X,y

= . Al
CT I (el e

Because the detection data were not fitted well by this
simple model, we added another source of inefficiency,
stimulus uncertainty. As Pelli'®? suggested, humans of-
ten perform as if they were uncertain of the target loca-
tion and possibly the target shape. To model this, we as-
sumed that instead of monitoring a single visual
mechanism at each target location, humans monitored U
additional mechanisms per location. We again assume
that the decision rule is to choose the location correspond-
ing to the mechanism with the highest response. To
make the calculations tractable, we assumed the follow-
ing:

1. The mechanisms’ responses were independent:
> fiw, y)fix, ) = 0 for i # .
xy

2. Only one mechanism at each location responded to
the signal/distractor, while the others responded to noise:

2 fi(x, y)t(x,y) = 0 for all except one mechanism.
xy

3. The standard deviations of the responses were
equal.

While it is possible to relax these assumptions and cal-
culate the predicted performance, doing so adds addi-
tional free parameters. An observer monitoring U + 1
mechanisms per location will be correct if any of the
mechanisms corresponding to the target location has the
highest response. For our detection task, the distractors
had zero contrast, so the responses of all mechanisms ex-
cept that responding to the target had equal means (zero).
As shown by Eckstein et al.,'® in this case, the percent
correct is

o (x —d')?
Po(d', N) = 100(277)*N<U+1>’2f dx exp —}

J dy exp(g)

+oo x2
+ 100U(277)’N(U“)/2f dx exp 5)

X y2
f dy exp(E)

(z - d’)T

NU+1)-1
X

N(U+1)-2
X

) (A7)

xf dz exp

where, as above,
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> fla, y)t(x, y)

X,y

[1+ (oflop)]™

U
Il

SNR X

= a X SNR.

We fit this model to the detection data by using the two
free parameters: the uncertainty number, U, and the
slope, a.

3. Comparing Performance

A common metric to quantify how well humans perform a
task is to compare their performance with that of the
ideal observer with a metric known as the absolute
efficiency.>*®> We define absolute efficiency®! as

Absolute efficiency = (d{, man/@ deal) - (A8)

Thus, for our model with zero uncertainty, the absolute ef-
ficiency measures how well the visual processing filter
matches the signal template and how large the internal
noise is relative to the external noise:

2

> flx, y)tx, ¥)
X,y

Absolute efficiency = . (A9)

[1+ (of/op)]™”
For the model with stimulus uncertainty, the absolute ef-
ficiency depends on SNR. To compare performance, a
useful metric is the relative efficiency, which measures
the amount of information used by one decision relative to
that used by another:

Relative efficiency = (d jecision 1/ hecision 2)>- (A10)
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